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J. Phys. A: Math. Gen. 16 (1983) 4369-4375. Printed in Great Britain 

Pinning-free soliton lattices and bifurcation in a discrete 
double-well model: exact results 

M Hergh Jenseni, .Per Bakf and A PopielewiczS 
+ H C 0rsted Institute, Universitetsparken 5, Copenhagen. Denmark 
i Institut fur Theoretische Physik I l l ,  Justus Liebig Universitat, 6300 Giessen, West 
Germany 

Received 31 January 1983 

Abstract. I t  is shown that the chain of coupled particles in the double-well potential 
introduced by H Schmidt is completely integrable in the static limit. The chaotic behaviour 
and the associated infinite series of bifurcations found in the related discrete qJ theory 
are absent in the model. The solutions are generally unpinned soliton lattices. The model 
exhibits a bifurcation where a hyperbolic fixed point becomes elliptic and splits into two 
hyperbolic fixed points. The bifurcation does not lead to chaos. 

1. Introduction 

Krumhansl and Schrieffer (1975) have studied a chain of harmonically coupled particles 
in the double-well cp' potential governed by the Hamiltonian 

In the continuum limit there are propagating soliton solutions, 

9 =tanh(wt-qn).  (2) 
However, when the continuum approximation is not applied, the equation of motion 
of (1) has complicated chaotic solutions even in the static limit (Aubry 1979, Bak and 
Pokrovsky 1981, Bak and Hdgh Jensen 1982). Some of these solutions can be 
characterised as irregularly pinned soliton lattices which play an important role in the 
theory of commensurate-incommensurate transitions (for a review, see Bak 1982). 
In particular the model exhibits an infinite series of period-doubling bifurcations with 
universal exponents leading to chaos (Bak and HIdgh Jensen 1982, Janssen and Tjon 
1982). 

In an interesting paper H Schmidt (1979) pointed out that if the cp' potential is 
suitably modified the single soliton ( 2 )  becomes an exact solution to the discrete model. 
One might therefore wonder if it is possible in a similar way to construct a discrete 
model without chaotic behaviour. In this paper i t  will be shown that the chain of 
interacting particles in the potential introduced by H Schmidt is completely integrable 
in the static limit. The solutions are generally unpinned soliton lattices, and there are 
no chaotic stationary solutions. The model exhibits a standard bifurcation where a 
hyperbolic fixed point becomes elliptic and splits into two hyperbolic fixed points but 
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there is no infinite series of bifurcations leading to  chaos. Rrazowskii et a1 (1982a, 
b) have recently found that a discrete model of the Peierls transition is also completely 
integrable and has similar regular soliton lattice solutions. Their solutions are related 
to  integrals of the Toda lattice. The problem studied he‘re belongs to  a larger class of 
problems investigated previously by McMillan (1971). 

2. The model and the analytic solutions 

Consider the Hamiltonian for a harmonic chain of particles in a local potential V(cp,), 
where p,, is the position of the nth particle in the nth double-well potential 

H = c pf;/2m + i(Cpn - (Fn-  1 l 2  + V(cp,). 
n 

The static, stable solutions are found among the solutions to the equations 

(Cpn - c p n - I )  - ( % + I  - cp,) + V’(Cpfl) = 0, 

c p n + 1 =  V’(cp0,)+2P,,-zn, 

d2cp/dn2 - V’( cp) = 0. 

which can be rewritten as an infinite series of difference equations 

z,, + 1 = v,,. 
In the continuum approximation (4) takes the form 

If V is chosen as a cp4 potential 

V( cp) = $ U (  q Y 2  - 1 ) 2  

cp(n) = cpo d ( n  -%)/lol, 

l / l i =  a p i / k 2 ,  IPOI 1. 

k 2  = cF:/ ( 2  - cp3. 

the solutions to (6) are lattices of regularly spaced solitons 

4, = 1 / q 
with 

Here sn are elliptic functions with modulus k determined by 

The single soliton solution (2)  with w = 0 arises from (8) in the limit qtr+ 1 ( k  + 1). 
In the discrete case the solutions can be generated numerically by iterations of the 

two-dimensional mapping (5) with the (p4 potential (7) inserted. Figure l ( a )  shows 
trajectories generated in this way for a =0.8. Note the regular ( K A M )  trajectories 
which are  filled up ergodically as the iteration proceeds, and the chaotic, irregular 
trajectories outside (and between) the regular ones. 

Our procedure is to look for a potential V(cp,,) such that (8) becomes an exact 
solution even in the discrete case. Inserting ( 8 a )  into (4) we find 

P n + l -  2% + P,1-1 

=cpo(sn(qn+n)+sn(qn-n)-2 sn(qn)) 

= 2cn(q) dn(q){cp, sn(n4)/[1- ( k ’  sn2(q)/cp3cpi sn2(nq)I)-2cposn(nq) 

= V‘(cPn) (9) 
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Figure I. Plots of the numerically iterated mapping ( 5 )  for ( a )  the 9' potential and ( b )  
the H Schmidt potential, both for a = 0.8. Note the absence of chaotic behaviour in the 
latter case. Analytic expressions for the trajectories are  given in the text. 
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with 

The elliptic functions sn, cn, dn have a modulus k determined by 

k 2 =  (p i -  ~ t p i ) / ( 2 -  U -pi). (11) 

V ( c p , ) = ( l - l / a )  In(l-w2,)-coZ,, (12) 

The equation (10) can be integrated to yield 

which is precisely the €1 Schmidt potential. 
Hence the discrete system of equations (4) with the potential (12) has the same 

solutions as the continuous cp4 equations. 
The functions pn = cpn sn[(n -xO)/l(,] describe lattices of solitons with widths lo. By 

adding a phase constant to this solution or changing the modulus we can construct 
other solutions to ( 5 )  expressed in terms of elliptic functions (see for instance 
Abramowitz and Stegun 1964): 

(13) G n  = Po sn[(n - xo)/lo+ i ~ ' 1  = (cpo/k)ns[(n - x o ) / ~  

where i K '  is the imaginary half-period for the sn function; 

cp̂ n = (cpo 1 + icpo2) sn{( k + i k')[( n - x J /  1,11, ( k - ik ') /  ( k + i k ' ) )  

where k 2  + k" = 1 and the parameters fulfil the rather complicated equation 

(k4/cpfl ) ( ( P O ,  + icp,d2 = [ I -  a(cpo~+ i(~oJ'1/[2- a - (POI  + icp02)~I. 
(14b) 

Altogether the solutions (8) ,  (13) and (14) fill up the whole (cp, z )  space of the mapping 
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(5) for 0 < a < 2, so the integration is complete. For a > 2 there are solutions of the form 

( 1 5 a )  

(15b)  

The functions (13),  (14a) and ( 1 5 4  assume values Ipnl > 1 / Ja  such that (12) becomes 
imaginary. However, when the equation for stability (4) is constructed, an imaginary 
part is differentiated out and the mapping remains unchanged. Because of discreteness, 
trajectories in the (p, z )  space can jump across the singularity. 

Of course we can also generate the same trajectories numerically by iterating (5) 
with the potential (12) inserted. Figure 1( b )  shows the results for a = 0.8. Compare 
with figure l ( a )  and note that the complicated chaotic trajectories found for the (o' 

potential have disappeared. In fact almost all the features found by Bak and H0gh 
Jensen fo r  the (p4 theory have vanished, including the infinite series of bifurcations. 
We  have thus established that (5) constitutes an area-preserving two-dimensional 
mapping with regular periodic trajectories only. Besides the regular K A M  trajectories 
which a re  filled up  ergodically there a re  also trajectories with finite period (limit cycle 
points) corresponding to solutions with rational values of loK, where K is the quarter 
period of the sn function (see Abramowitz and Stegun 1964). 

A shift of the parameter xo does not affect the solutions (8) ,  (13),  (14) ,  (15). All 
the solutions a re  thus 'unpinned' i.e. there is a Goldstone sliding mode associated with 
x ( ,  even for the commensurate orbits, in contrast t o  the discrete p4 theory. Note in 
figure 1(b)  the regular orbits with (P,, > 1. In this regime the corresponding (p4 

trajectories are chaotic. 
Figure 2 shows the H Schmidt potential (12) compared with the p4 potential. For 

small values of a. where discreteness effects a re  small, the potentials must necessarily 
be very similar. When the parameter a exceeds 1 the potential loses its double-well 
nature. 

Figure 3 shows (P,? calculated with a =0.5 for the two different potentials. The 
starting point is the same in both cases. In ( a )  we recognise the regular soliton lattice 
with a soliton for approximately every 5th lattice point (solitons marked by arrows). 
The corresponding solution for the p4 model is chaotic (figure 3( b ) ) .  The solitons a re  
pinned randomly and the iteration can proceed only a finite number of steps before 
divergence. 

Bak and Pokrovsky (1981) found that the (p4 solitons will be pinned and the K A M  
trajectories disappear when the distance between the solitons exceeds a critical value 
I, - -log E,,, where E,,, is the single soliton pinning energy. In order to investigate 
the pinning effects we add a perturbation term to the pinning-free potential (12)  

V*((P,) = V((P, , )  +iAa'p;. (16) 
For A = 1 (16)  coincides with ( 7 )  up to the fourth-order term. The pinning energy 
becomes 

(on = -icp,, sn(i(n - x l l ) / 4 ~ ,  k )  = cpll sc((n - x d / L ,  k ' )  

k 2 =  ( c p ; +  acp;)/(a - 2 -  P;). 

with 

E,,, = &4a2Z [tanh4(n/Il,) -tanh'((n + t ) / I o ) ]  
n 

which is necessarily proportional t o  A ;  hence 1, - -log A. The chaotic regime of the 
mapping (5) with V defined in (16) therefore increases as -log A ,  which agrees with 
our numerical studies. Also we have confirmed the logarithmic variation of I ,  with A 
numerically. 
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Figure 2. The  potential ( 1 2 )  and the b4 potential 
for various values of a. 
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Figure 3. Soliton-array solution for a =0.5. The  
solitons a re  marked by arrows. ( a )  Integrable 
model:  regular soliton lattice. i b )  &4 model:  ran- 
domly pinned solitons (chaotic behaviour).  

3. Bifurcation 

The discrete q 4  model exhibits a bifurcation of the point (0,O) at a = 2 .  To investigate 
if a similar bifurcation occurs in the integrable model we consider the linearised version 
of the mapping ( 5 )  defined by the Jacobian matrix: 

1+ap;, -1 
1 -aqf 1. - 'r ~ 0 

D-i. = 

Note det Df = 1, confiIming that the mapping is area preserving. A bifurcation might 
take place when Tr DT = - 2 ,  which happens for a = 2 (when the potential has lost its 
double-well nature). When 0 < a < 2 the eigenvalues of ( 1 8 )  are on the complex unit 
circle and the point (0,O) is an elliptic fixed point. When a = 2 the eigenvalues collide 
at A = -1 and for a > 2 they are confined to the real axis so the fixed point indeed 
becomes hyperbolic. However, there is not a bifurcation like the one for the q 4  theory. 
Let us find analytically the possible period-two solutions. Inserting qn+, = qnPl  in (5) 
we find 

$on = ( 1  - a ) & / (  1 - azf,). 

If (cp,, 2,) belongs to the two-cycle, (pn+,, z ,+,)  must be the other point of the cycle: 

z,=(1-a)cpn/(1-acp:). ( 1 9 b )  
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The equations (19a, b )  have the solution 

(cp, z)=*[(2/a-1)1 '2 ,  -(2/a-1)1'2] (20) 
defining the two-cycle. This solution exists for a less than 2, not for a greater than 
2. The points (20) collapse at (0,O) for a = 2 and move to complex space. Hence a 
bifurcation occurs for decreasing a. To illustrate this situation figures 4(a) and ( b )  
show iterated trajectories for values of a slightly less than and slightly larger than 2. 
For a > 2 (4b)  the fixed point is hyperbolic, and there is no evidence of a two-cycle; 
for a < 2 ( 4 a )  the fixed point (0,O) is elliptic. The limit cycle points (20) are indicated 
by dots; their surroundings are hyperbolic. We have thus established that as a passes 
through 2 from above, a hyperbolic fixed point bifurcates into a hyperbolic two-cycle 
and becomes elliptic. 

Apparently, the mapping, although discrete and nonlinear, cannot produce infinite 
series of bifurcations or chaos. However, a single bifurcation occurs. All this is 
contained in the analytic solutions ( 8 ) ,  (13),  (14) and (15). 

-1 
'p" 'p" 

Figure 4. Plots of trajectories for ( a )  a = 1.75 and ( b )  a = 2.25. The large dots on ( a )  
mark the two-cycle found analytically in the text. The fixed point (0,O) is hyperbolic on 
( b )  and elliptic on ( a ) .  A bifurcation has taken place at a = 2. 
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